Sandia

Exceptional service in the national interest National
Laboratories

6 T e e, =S
3 = e e .'“\\,_\ -
275 e e e 5 N g
2 ‘ 2 e .,’r:‘j‘ g 2 - '
3 Y o
% N . P :
74 D N e R R =S et
N E / /e JAS B
i 5) .) S 3
. sy " Yy h ¢ R NS
g \) v e
| y ’ - o 3
b, L LS 5 TLC S5 24 e ¥
"4 -~ -
P, il .\ S

J. Cook, H.C. Edwards, D. Dinge, M. Glass, S.D. Hammond, R. Hoekstra, P.T. Lin, M. Rajan, C.R. Trott and C.T. Vaughan
[sdhammo | crtrott] @sandia.gov

Application Performance Team
Center for Computing Research
Sandia National Laboratories, NM, USA

U.S. DEPARTMENT OF b
ENERGY é’.’ VA! VJ Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
S Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Overview of SNL i) st

= Part I: Performance, Portability and Productivity of C++
Abstractions for the LULESH mini-app
= Qverview of our porting activities

= Comparison of performance on leading HPC architectures for OpenMP,
RAJA and LULESH

= Evaluation of programmer effort required for OpenMP, RAJA and Kokkos

= Part Il: Performance Analysis of MiniAero

= Comparison of Scaling (MP1/OpenMP) for Haswell, BlueGene/Q, Knights
Corner and NVIDIA K80 GPUs

= |nitial expectations for codes on Trinity Phase-l and Phase-l|

= Discussion

Laboratories

PORTING LULESH TO KOKKOS

National

Kokkos Programming Model) .

Parallel

Application Data
Execution/Dispatch

Management

¢ § N ¢ § N

What How Where What How Where
(For, Reduce, Scan) (lterator) (Which Device) (Application Data) (Indexing/Atomics (Which Memory)
Streaming/Random)

Separation and Abstraction of Concerns
Abstract Application Data and Computation

National

Kokkos Programming Model (Compute)) .

Parallel

Execution/Dispatch

¢ §

What How Where
(For, Reduce, Scan) (Iterator) (Which Device) '
Parallel-For N How are iterations N Run on ..
Execution Pattern GPU? CPU? PIM?
decomposed?

Sensible defaults for many execution spaces to reduce programmer overhead
Let Sandia research and Kokkos developers handle the heavy work

Kokkos Programming Model (Data)

"4

Containers

Index Mapping,

+

Application Data

Management

Streaming/Random)

S

¢ § N

Views Access Spaces

What How Where
(Application Data) (Indexing/Atomics (Which Memory)

Sandia
m National

Laboratories

N

How should data be accessed?
Atomically? Streaming Stores?
Uncached loads?

Stored in..
HBM? DDR? NVM?

Sensible defaults for many memory spaces to reduce programmer overhead
Let Sandia research and Kokkos developers handle the heavy work

What Does Kokkos Run on Today?) .

Kokkos is running on every advanced
architecture test bed, prototype option on AMD systems

ASC Trinity Phase | — ATS1 ASC TLCC-2
O Intel Xeon Haswell (Intel, GNU, LLVM) Intel Xeon Sandy Bridge (Intel, GNU,
LLVM, Cray)

ASC Trinity Phase Il - ATS1

Intel Xeon Phi Knights Landing Emulator ASC Advanced Arch. Test Beds
(Intel)

a AMD Kaveri APU (GNU-HSA)

ASC Sierra — ATS2 ° ARM64 (GNU, LLVM)

0 POWERS (XL, GNU) 0 Intel Xeon Phi Knights Corner (Intel)

0 NVIDIA GPU (K20, K40, K80, NSDK-7.5)

0 = Kokkos Build Type in Release 0 = Prototype/Research

National

Examining Porting Strategies for Code Teams) S

= Very large proportion of ASC code at Sandia is MPI only
= |mplies a serial on-node model with limited thread safety applied

= Starting point for this study is the serial version of LULESH

= Taken from the OpenMP version but with all OpenMP pragmas, reductions
and specializations removed (“proxy” for “real” code)

= Provide several implementations to evaluate metrics:
= Kokkos: Minimal CPU, Minimal CPU with ref lambdas, Minimal GPU,
Optimized-V1, Optimized-V2, Optimized-V3
= OpenMP: Original OpenMP from LLNL, Optimized OpenMP from SNL
= RAJA: RAJA-Basic and RAJA-Index-Set

Sandia
ﬂ" National

Laboratories

Non Kokkos-Variants

= RAJA-Basic: code provided by Jeff Keasler and Rich Hornung from
LLNL, uses RAJA abstractions for parallel dispatch

= RAJA-IndexSet: code provided by Jeff Keasler and Rich Hornung
from LLNL, uses RAJA abstractions for data iteration

= OpenMP Original: NO-RAJA variant from LLNL

= OpenMP Minimal: a stripped down version using basic parallel-

for schemes and atomic operations developed from serial using
Intel AdvisorXE and InspectorXE (akin to developer using tools)

= OpenMP Optimized: Sandia optimized version which improves
vectorization and reduction performance

Optimized Kokkos Variants) faee,

Kokkos-Minimal-CPU: developed by a physicist with limited
experience writing threaded code (our experiment for code we
would get from many code groups)

Kokkos-Minimal-CPU-RL: basic port to Kokkos which utilizes
capture-by-reference lambdas to significantly decrease
programmer burden

Kokkos-Minimal-GPU: extension of Kokkos-Minimal-CPU to work
on the GPU (mainly data structure const changes)

Kokkos-Optimized-v1: eliminate buffer realloc; reduce register
pressure

Kokkos-Optimized-v2: use Kokkos Views with Layout and Traits,
Hierarchical Parallelism

Kokkos-Optimized-v3: kernel fusion

Sandia
rl" National
Laboratories

Swim Lanes for Code Teams

Trinity Trinity Sierra Crossroads
Phase | Phasell . . .
: Serial OpenMP Optimized OpenMP : : : ,
: . : : | T A T e T i S i S ’\\> g
- N - e = - e L KR WAz g
Kokkos Min. CPU X Kokkos Min. CPU 3
— S— i — .
; : ; ; : e : @)
: ; Kokkos Min. GPU K-Opt 1! K-Opt2 K-Opt'3 T
RAJA RAJA Optimized CPU RAJA GPU/Optimized GPU: D8
' o}
2015 2016 2017 2018 2019 2020 2021

GpenP [S e e D Ry

' ' ' ' . N 1w
:CUDA : : | > 33
C++20 Language 5 5 5 ——

Specification

This is not an official Sandia position

Sandia
ﬂ" National

Laboratories

Swim Lanes for Code Teams

Trinity Trinity Sierra Crossroads
Phasel Phase Il .

: Serial [OpenMP Y Optimized OpenMP 5)

,
g rigoge g pis et g e g e ey NS & c_B
| > > > ; s o]
; ; . yr------- b R R 0 =3
: Kdkkos Min. CPUJX Kokkos Min. CPU : : &
> ; : ; o
Kokkos Min. GPU K-Opt 1! K-Opt2 K-Opt'3 T
- >
: : : : : @
RAJA RAJA Optimized CPU RAJA GPU/Optimized GPU: 0
. S
2015 2016 2017 2018 2019 2020 2021
C:)penMP Initial Initial Optimized ATDM/
; Ports Portable Portable Language
: CUDA “Day One” Versions Versions Standards?

C++20 Language

Specification : g
This is not an official Sandia position

Sandia
ﬂ‘ National

Swim Lanes for Code Teams
Trinity Trinity Sierra Crossroads
. Phase | Phase Il . . .
: Serial [OpenMP V Optimized OpenMP E n o
= D
5 Kdkkos Min. CPUIX Kokkos Min. CPU :) 2
> — ; ; ; o
Kokkos Min. GPU K-Opt 1: K-Opt2 K-Opt:3 T
- 5
: - : : : Q
RAJA RAJA Optimized CPU | RAJA GPU/Optimized GPU: 2
) S
2015 2016 2017 2018 2019 2020 2021
C.)penMP Initial Initial Optimized ATDM/
: Ports Portable Portable Language
:CUDA “Day One” Versions Versions Standards?
ool Initial Parallel Optimized Many Task? |
Parallel Dispatch + Dispatch + Data
Dispatch Initial Data Structures Structures

This is not an offic-ial Sandia position

What are We Presenting?) e

= |n an ideal world we would have all code ported with minimal
changes

= Very unlikely to happen for ASC codes, complicated, legacy algorithms,
years of engineering

= So what can we hope for?
= Progression of modifications to the code to get them ready for NGP

= |nitial ports require less modification to get code up and running but don’t
give top performance

= Slowly evolve code/data-structures to give better cross-platform
performance

= Sandia ASC L2 results show what we might be able to expectin a
small case study using LULESH
= We think there is a similar story for Kokkos and RAJA

Laboratories

Evaluating Performance Across Architectures

PERFORMANCE PORTABILITY OF
LULESH VERSIONS

ASC Arch. Test Bed Systems Used For Testing

= Shepard Intel Haswell
= Dual-socket, 16-cores/socket, 2 x 256-bit FP-FMA SIMD/core, SMT-2
= 128GB RAM/socket
= |ntel 15.2.164 Compiler with OpenMPI| 1.8.X

= Compton Intel Sandy Bridge and Knights Corner
= Dual-socket 8-cores/socket, 2x256-bit FP SIMD/core, SMT-2
= 32GB RAM/socket
= |Intel 15.2.164 Compiler with OpenMPI 1.8.X (Sandy Bridge)
= 57-core KNC-CO, 1.1GHz, 6GB/RAM
= |ntel 15.2.164 Compiler with Intel MPI 4.1.036 (KNC)

Sandia
National
Laboratories

ASC Arch. Test Bed Systems Used For Testing

= White POWERS
= Dual-socket, Dual-NUMA/socket POWERS, 3.4GHz
= 5-cores/NUMA = 10 cores/socket = 20 cores/node, SMT-8/core
= 128GB RAM/NUMA =512GB/node
= GNU 4.9.2 with OpenMPI 1.8.X
= |BM XL 13.1.2 with OpenMPI 1.8.X

= Hammer APM ARM-64/v8
= Single socket/node, 8-cores/node, 2.4GHz
= 32GB RAM/socket
= GNU 4.9.2 with OpenMPI1 1.8.X

Sandia
National
Laboratories

ASC Arch. Test Bed Systems Used For Testing @ =N

= Shannon Intel Sandy Bridge + NVIDIA Kepler K40/80

= Dual-socket, 8-cores/socket Sandy Bridge = 16 cores/node

= 32GB RAM/socket

= NVIDIA Kepler K40 per socket

= NVIDIA CUDA 7.5 SDK

= GNU 4.7.2 with OpenMPI 1.8.X (compiled with CUDA support)

Optimization Notice) Joums,

= Where possible we have selected architecture appropriate optimization flags
to improve performance
= Kokkos — baked into the Kokkos Makefile system

= RAJA - baked into RAJA Makefile system and RAJA header files for alignment,
vectorization width etc (header additions are annoying)

= Results are the harmonic mean of LLNL-coded “Figure of Merit” (FOM) from a
minimum 10 runs, max, min etc are all recorded

= Error bars are typically very small (1-3%) so are not included in plots for brevity

= All configurations used optimized (per platform) MPI process pinning, thread
affinities and job configurations
= Lots of research at Sandia using Mantevo over last four years to understand these issues
= An on-going process but can give >2X performance difference

San_dia|
Performance Portability Metrics LufE

LULESH Figure of Merit Results (Problem 45)

Higher B HSW 1x16 TOHSW 1x32 O P8 1x40 XL EKNC1x224 OARM64 1x8 E NV K40

is
Better

10000
8000 N
)
E 6000 10 [
E -
O 4000 1 * | |
LL.
“ 1l Ih H: IME ‘H HIH
oMby 1) o Mo o Ko Rl R RN RIRR
N Q Q XY X N N N ™
{\fob Q§$ Q/o@ Q,’??\ \?\\"Q’ \k_,éz \g(? S° QQ OQ OQ&
O \8 O o < SN N .
Q X -
& & &
R

Results by Dennis Dinge, Christian Trott and Si Hammond

San_diaI
Performance Portability Metrics LufE

LULESH Figure of Merit Results (Problem 60)

Higher ~ B HSW 1x16 LOIHSW 1x32 O P8 1x40 XL EKNC 1x224 LIARM64 1x8 E NV K40

Better 14000

12000
10000
8000]
6000 -
4000 -

0 Mo M B [F
N

FOM (Z/s)

Results by Dennis Dinge, Christian Trott and Si Hammond

Sandia

Performance Portability Metrics) e

LULESH Figure of Merit Results (Problem 60)

Higsher B HSW 1x16 COOHSW 1x32 OP8 1x40 XL EKNC 1x224 LIARM64 1x8 HE NV K40
Better

14000
12000 Initial ports of code will give similar results to =1
OpenMP, +/- 10-15%. Seems to be down to different
7y 10000 optimization strategies in the compiler.
N 8000 L :
S 6000 s====gH====s====================== I
hrd f 1
4000 : : I
o fl I . 1
I]
O N _/
. %o"’} (\@Q §§ %Q;B\ v\o)"’} (;20 ,(320 0%5’ OQ\,"\’ OQ@’ OQ“%
N & N \'s N N o &) 4 NG ’
®Q e)O \0 be Q\v L L %0\5 \{_O \{_O %O
S 6’\\'\'@ . Q\(Q
R & N\

Results by Dennis Dinge, Christian Trott and Si Hammond

National

Sandia
Performance Portability Metrics) e

LULESH Figure of Merit Results (Problem 60)

Higher ~ B HSW 1x16 LOIHSW 1x32 O P8 1x40 XL EKNC 1x224 LIARM64 1x8 E NV K40

is

Better 14000 ---------------------- .
Kokkos implementations deliver consistent A\
12000
performance across all architectures :
— 10000 I I
N I I
N 8000 i ul = I
= _ I - I
S 6000 | !
4000 : - :
2000 Ht? ! I i
| |
0 \ 1 I
Y R € W D TETITTITAT S
& & & & v\c’e & &£ QQIQ\ L & &
S K SR\ SO & & & N N
& 2° @\0 F ¥ E T O @
N v
& & &
oR

Results by Dennis Dinge, Christian Trott and Si Hammond

National

Performance Portability Metrics) e

LULESH Figure of Merit Results (Problem 60)

Higher B HSW 1x16 TOHSW 1x32 O P8 1x40 XL EKNC1x224 OARM64 1x8 E NV K40
IS
Better

14000
12000 SMT on Haswell doesn’t seem to improve performance,
generally good on POWER and KNC
10000 =

A
e
2, E
x. |
:I:::I

or_ 1 v_vb__ob__ovl_
) ’b\ Q Q N > \%
S é\@ ef\@ &P ?\\‘7 & (S
M K K ¥ P& & L&
R SN AR N
Qé\ 6'\(\'@ . Q\@ &
: \
SHRFS A\

Results by Dennis Dinge, Christian Trott and Si Hammond

Thoughts and Experiences h

Sandia
National
Laboratories

= These problem sizes are small relative to some of the systems
= O(100) — O(200) MB in problem size
= POWERS8 — very large memory, large caches (particularly L4)
= GPU - needs more parallelism

= We are trying to capture performance effects based on feedback

from LULESH developers

= But larger problems help our optimizations even more

= Not necessarily demonstrating the best potential FOM
performance

= Can get up to 2X these FOM figures from our implementations

Kernel Analysis for Kokkos Applications

Sandia
National
Laboratories

= Consistent profiling across architectures is hard

Vtune does not like to profile deep in OpenMP hierarchies which are
enclosed in headers

Nsight manages OK
Not clear that tools understand C++ abstraction layers

= KokkosP Profiling Layer

Recent addition to Kokkos, option to always compile in

Tools dynamically loaded, can be stacked, lightweight

Expose calling structure of kernels and devices to profiler
Better context awareness of what execution is being requested
Still very early prototype but shows some promise

National

KokkosP Kernel Comparison of Kokkos Opt 1 @)

Haswell 1x16 S=45 1=1000

H CalcFBHourglassForceForElems
A

O CalcKinematicsForElems

B _INTERNAL_9_lulesh_cc_bde2
d54a::CalcHourglassControlFor
Elems(Domain&

OlintegrateStressForElemsA

O EvalEOSForElemsA

O CalcMonotonicQGradientsForE
lems

O CalcMonotonicQRegionForEle
ms

[CalcFBHourglassForceForElems
B

POWERS 1x40 $=45 1=1000

B CalcFBHourglassForceForElems
A

B CalcHourglassControlForElems
(Domain&

O CalcKinematicsForElems

OintegrateStressForElemsA

OEvalEOSForElemsA

O EvalEOSForElemsB

O cCalcMonotonicQGradientsForE

lems

E CalcMonotonicQRegionForEle
ms

B EvalEOSForElemsC

M EvalEOSForElemsD

See similar breakdown across architectures but we can profile them all using one tool

Evaluating Effort to Develop Versions using
Performance Portable C++ Abstraction Layers

PROGRAMMER PRODUCTIVITY OF
LULESH VERSIONS

National

How do we calculate “productivity”?) 5

With great difficulty — lots of discussion in the community about what
this really means

Our approach:

1.

2.
3.
4

Remove all comments from the code

Utilize the clang-format LLVM tool with “Google” code option
Compare the number of sites using Apple’s FileMerge tool
Compare the lines added/removed using diff —b —w <paths>

Not perfect and we have hand modified code of all versions to bring the
counts more into line (and to be fair wherever possible)

Point is to show approximate level of programmer effort not be
precisely quantitative because coding style largely down to individual

http://clang.llvm.org/docs/ClangFormat.htmi

Count of Sites at Which Changes are Made [

Sites at Which Changes are Made vs. MPI-Only LULESH

rower B Main Code M Header 0O Total
Better 350
300]
(V) —
& 250 :
g - p—
S 200 -
©
S 150 -
¢ _
& 100
0
AN .
& & & RS M S SR AP LG
N ¢ ¢ N ¥ NG N] o o o
) oR oR N8 9) O C N N N
R > Ny < A 3 ©
Q®$ Q\(Q'b ((‘\\’\/e Ay
< .
O NS

Results by Dennis Dinge, Christian Trott and Si Hammond

Count of Sites at Which Changes are Made [

Sites at Which Changes are Made vs. MPI-Only LULESH

Lower

is [1 Main Code U Header N Total
Better 350

W
o
o

N
U1
o

-
U1
@)

Sites of Change
S
o
|

100

50
o)
N ™ N N % A v)
& S \géz \ég < S ,OQ& < o«
S R {p‘*’b O @ ©
S
%
R

Results by Dennis Dinge, Christian Trott and Si Hammond

Count of Sites at Which Changes are Made [

Sites at Which Changes are Made vs. MPI-Only LULESH

Lower

is [1 Main Code U Header N Total
Better 350 ‘

Kokkos and RAJA variants are similar

w
o
o

N
U1
o

Sites of Change
S
o

Results by Dennis Dinge, Christian Trott and Si Hammond

National

Sandia
Source Code Line Changes LufE

Source Code Lines Added/Removed and Total vs. MPI-Only

B Main Code Added B Main Code Removed B Main Code Delta

Lower

is 800 O Header Added OHeader Removed O Header Delta
Better

Lines of Code

Results by Dennis Dinge, Christian Trott and Si Hammond

Sandia
ﬂ" National

Laboratories

Source Code Line Changes

Source Code Lines Added/Removed and Total vs. MPI-Only

0 Main Code Added O Main Code Removed
Lower B Main Code Delta O Header Added
Be'tster 800 O Header Removed O Header Delta
700 . . . M
C++ Abstraction Layers have approximately similar —

600 numbers of lines changed to the original OpenMP -
() code from LLNL |
T 500 i
S _
« 400 _ - i
o _ _
§ 300
‘5 200

3 Wl I

O LL e = j HE =N EEEEEEE Ea SN BN B B I BTN Simih R A
> Q Q Y X N N N\ A v
-100 {\\0’0 ®$ Q/(\@ Q)’b"\ v\ee S \&-’8 Q\Bg\ OQ& OQ& QQ&?)
KK A T e
N\ @ ¢ L
QQ’(\ '\0\@ &
A\
O S OQ&.

Results by Dennis Dinge, Christian Trott and Si Hammond

Sandia
ﬂ" National

Laboratories

Source Code Line Changes

Source Code Lines Added/Removed and Total vs. MPI-Only

0J Main Code Added [J Main Code Removed
Lower B Main Code Delta O Header Added
Botter 800 O Header Removed O Header Delta
700 . . . M
C++ Abstraction Layers have approximately similar —

600 numbers of lines changed to the original OpenMP -
v code from LLNL i
T 500]
S _
+« 400 - — -
o _ _
Q 300
5 200

100 Hl

O = “m Ll W= — []] L
> XY X
-100 &3& e5§2 ?5§2 @ﬁ%\ ?“\c)@ \kf(so
< F KT
N © &
Q,Q \<° N
Q $ &) .
9 \} Q° Naive port to Kokkos uses slightly more changes than
@)
Is needed by capture-by-reference lambdas

Results by Dennis Dinge, Christian Trott and Si Hammond

Programmer Development Time) e

Initial Kokkos-CPU port by Dennis took a few months
= No threading/OpenMP/Kokkos experience for code development
= Lots of correctness and performance issues came up
= |nitial experience with programmer tools and profilers

= Kokkos optimized implementations
= O(few weeks) of Christian’s time (“Kokkos-expert”)

= OpenMP initial and optimized implementations
= O(few days - week) of Si’s time written on a plane

= These are not significant amounts of FTE but the code is small in comparison to
production settings (but code groups are larger and better resourced)

= Difficult (impossible?) to do a deep quantitative comparison

What can we take away?) e

= C++ abstraction layers are using similar numbers of changes in
code (both code sites and SLOC-delta) to directives

= Perhaps to be expected given implementation strategy is similar
in unoptimized variants of the code

= Thisis a good thing for developers — hard work is in developing the parallel
algorithm, not in how it is expressed in source code

= Looking at changing roughly 15% of the code to get initial parallel
versions in this example

= Warning: example is friendly to parallelism because of its heritage

= Do we need directives in application code at all?

ANALYSIS OF MINIAERO

Sandia
ﬂ" National

Laboratories

MiniAero Overview

= QOriginally written by Ken Franko (now at Google)
= Added to Mantevo suite in 2014

= Designed for exploration of Kokkos programming model
= Not to be used as a proxy for production algorithms

|II

= Did not have an “original” OpenMP or serial implementation

= Different options for threaded algorithm to aggregate values onto
the mesh

= Use of atomics operations
= Use of gather/sum

Sandia

MiniAero Scaling Analysis on Trinity Test MachiPég:.

Strong Scaling MiniAero Results for Mutrino

Lower ~+=OpenMP-1 OpenMP-2 —*+OpenMP-4 —=OpenMP-8 —*OpenMP-16
Better

10000 Approximately 10% performance
difference by switching from MPI to
) \ OpenMP (not all kernels are fully
T 1000 - .
c parallelized)
o
v
v
wn
~ 100
)
E
)
5
= 10
1
32 64 128 256 512 1024 2048

Processor Cores Utilized

Results by Jeanine Cook and Courtenay Vaughan

Sandia

MiniAero Scaling Analysis on Trinity Test MachiPég:.

Weak Scaling MiniAero Results for Mutrino

Flatter =¢+=QOpenMP-1 OpenMP-2 —*+OpenMP-4 —=OpenMP-8 —*OpenMP-16

is

Better

3000
~ 2500
'g .
© 2000 -
9
)
\4)
o 1000 Approximately 20% performance
._g 1000 difference by switching from MPI to
S OpenMP (not all kernels are fully
= 500 parallelized)

0
32 64 128 256 512 1024 2048

Processor Cores Utilized

Results by Jeanine Cook and Courtenay Vaughan

National

MiniAero Scaling Analysis on BlueGene/Q) .

Weak Scaling MiniAero Results for BlueGene/Q

Flatter ——MPI-Only Atomics MPI1 Only Gather Sum
petter ——MPI + OMP-64 Atomics ——MPI + OMP64 Gather Sum
500
__450
8400 ¢— ~—
c
@ 300
2 250 | _—
o 2D = \
€ 150
Z 100 Poor atomics performance on BG/Q (not optimized in
50 Kokkos). MPI only up to 20% faster than threaded
0
1 4 16 64 256 1024 4096

BG/Q Nodes Utilized MPI = Nodes * 64 ranks, MPI +
OpenMP Ranks = Nodes

Results by Paul Lin

San_dial
MiniAero Scaling on GPU Clusters)

Weak Scaling MiniAero Results for K80 GPU Cluster

Flatter ——Atomics Gather Sum
IS
Better

160

_— =
NOD
o O

f
!
!

Good atomics performance on GPUs
40 means we don’t see the same results

20 at BG/Q.

Runtime (Seconds)

GPU Cards Utilized

Results by Paul Lin

MiniAero Scaling on KNC Clusters)

Weak Scaling MiniAero Results for Compton KNC Cluster

Flatter ——Atomics Gather Sum
IS
Better
700
~ 600
5 o —®
€ 500 ——
8 G— —
X 400
“E’ 300
S Closer performance with atomics and
c 200 ..
2 gather-sum on KNC. Poor scaling is
100 due to very slow intercard MPI
0
1 2 4 8 16 32

KNC Cards Utilized
224 OpenMP threads per card (= 1 MPI rank)

Results by Paul Lin

National

Emulation and Instruction Analysis for KNL (0.

Instruction Breakdown by Vector Width for MiniAero

B Scalar BAVX128 OAVX256 BEAVX512

100%

80% -

60% -

40% -

20% -

Percentage of Instructions Executed

0% -

SNB HSW KNL

= Covers all instructions executed (dynamic stream) including move
operations and register clears

Sandia
ﬂ" National

Laboratories

MiniAero Summary

= Question as to whether exactly the same algorithm will run on all architectures
well — atomics vs. gather-scatter

= Open question which requires further research

= May not be able to find a single source which always runs truly well
everywhere
= |s notintrinsic to Kokkos, the same issue is true for OpenMP, RAJA etc

= Continues to reinforce why we need codesign and research into our code
performance

= (Clearly still need to look at poor vectorization levels for Trinity machines

Laboratories

CONCLUSIONS AND DISCUSSION

: San.diaI
Summary e

= Showed portability of two Kokkos mini-app implementations
across ASC Advanced Architecture Test Beds

= Strong performance across architectures for LULESH

= Often as strong or stronger than equivalent OpenMP code

= |nitial expectations for use of Haswell, POWER and GPU systems

= Knights Landing still remains an unknown due to significant changes over
Knights Corner cards

= Evaluated programmer productivity for LULESH

= C++ abstraction layers are approximately equivalent to well optimized
OpenMP code in sites of code change and number of source lines

National

Feedback to Vendors/Community .

Kokkos is now on github.com (fully open source and free for everyone)
= Full public release of the most up to date development branches
= Strong engagement with NVIDIA, AMD and IBM, initial engagement with Intel

= Feedback to IBM and Cray on compiler issues, during this L2 both now compile miniapps
successfully

= Now has initial support for Knights Landing compile path

= |Implementations using Kokkos will be available for the community in Mantevo
release for SC15

= Poster submitted to SC15 covering OpenMP and Kokkos studies (no RAJA)

= C(Clearly still a need in some areas for better optimization support in compilers

= See very varied inlining, optimization, vectorization etc. More time and more focus by
the labs will help

= Committed to C++ abstraction layer support in development of ATS3 RFP

Sandia
ﬂ" National

Laboratories

Productivity

= Productivity in Kokkos in some ways has always been behind portability and
performance

= We needed to learn the best approach before we could work out how to enhance
programmer productivity

= Have learned a lot through discussions with RAJA team on why this is important and
through our own application work on LAMMPS, Trilinos, Albany, SIERRA etc

= Have a much stronger story in productivity on the parallel execution/dispatch

= This codesign study has helped inform us further

= Kokkos has strong story for data management

= |nitial work on efficient parallel STL-like containers

= Qur experience is 90% of the work is in making the algorithm parallel and optimizing
the data structures not in the specific way its written

Sandia
ﬂ" National

Laboratories

Kokkos in the Community

= Published a Kokkos Programming Guide in 2015
= Based on lots of feedback from community
= Covers general concepts and themes of Kokkos

= Kokkos Training Material
= 200 tutorial slide deck
= Multiple examples with varying levels of complexity

= Kokkos Tutorial at Sandia in September

= Qver 80 registered attendees
= Will work on multi-core, many-core and GPU Sandia test beds

= Tutorial at ACM/IEEE Supercomputing in November 2015

Acknowledgments L

National

Application Performance Team at Sandia
= Dave Resnick, Jim Thomkins, Sue Phelps

ASC Advanced Architecture Test Beds at Sandia

" Project Management and System Administration Team
= Jim Brandt, Ann Gentile, Victor Kuhns, Nate Gauntt, Jason Repik, T.J. Lee, Jim Laros, Sue Kelly

SIERRA Code Teams for inputs (-SM, -SD and -TF)

= Mike Tupek, Kendall Pierson, Nate Crane, Mark Mereweather, Travis Fisher & others

Kokkos Development Team
= Carter Edwards, Mark Hoemmen, Dan Sunderland, Irina Dimenshenko & others

ASC L2 Review Committee

Jeff Keasler, lan Karlin and Rich Hornung (LLNL) for inputs on RAJA, LULESH and
general programming model discussion

= We have learned a great deal from you folks

Sandia
National
Laboratories

Exceptional service in the national interest

BACKUP SLIDES

MiniAero Thread Scaling on Cray XC30 .

Thread Scaling per MPI Rank on Volta XC30

lower ~®1Node =#2Nodes =#4 Nodes <=#8 Nodes 16 Nodes =®=32 Nodes

Better 7000

See better performance from threads as we strong scale out to
6000 more nodes (smaller problem per node)

Ul
-
-
o

Solve Time (Seconds)

O I T T
1 2 4 8 16

Cores per MPI Rank

Results by Jeanine Cook and Courtenay Vaughan

